Was this page helpful?
ScyllaDB Python Driver is available under the Apache v2 License. ScyllaDB Python Driver is a fork of DataStax Python Driver. See Copyright here.
This document is meant to provide on overview of the assumptions and limitations of the driver time handling, the reasoning behind it, and describe approaches to working with these types.
Timestamps in Cassandra are timezone-naive timestamps encoded as millseconds since UNIX epoch. Clients working with timestamps in this database usually find it easiest to reason about them if they are always assumed to be UTC. To quote the pytz documentation, “The preferred way of dealing with times is to always work in UTC, converting to localtime only when generating output to be read by humans.” The driver adheres to this tenant, and assumes UTC is always in the database. The driver attempts to make this correct on the way in, and assumes no timezone on the way out.
When inserting timestamps, the driver handles serialization for the write path as follows:
If the input is a datetime.datetime
, the serialization is normalized by starting with the utctimetuple()
of the
value.
If the datetime
object is timezone-aware, the timestamp is shifted, and represents the UTC timestamp equivalent.
If the datetime
object is timezone-naive, this results in no shift – any datetime
with no timezone information is assumed to be UTC
Note the second point above applies even to “local” times created using now()
:
>>> d = datetime.now()
>>> print(d.tzinfo)
None
These do not contain timezone information intrinsically, so they will be assumed to be UTC and not shifted. When generating
timestamps in the application, it is clearer to use datetime.utcnow()
to be explicit about it.
If the input for a timestamp is numeric, it is assumed to be a epoch-relative millisecond timestamp, as specified in the CQL spec – no scaling or conversion is done.
The driver always assumes persisted timestamps are UTC and makes no attempt to localize them. Returned values are
timezone-naive datetime.datetime
. We follow this approach because the datetime API has deficiencies around daylight
saving time, and the defacto package for handling this is a third-party package (we try to minimize external dependencies
and not make decisions for the integrator).
The decision for how to handle timezones is left to the application. For the most part it is straightforward to apply
localization to the datetime
s returned by queries. One prevalent method is to use pytz for localization:
import pytz
user_tz = pytz.timezone('US/Central')
timestamp_naive = row.ts
timestamp_utc = pytz.utc.localize(timestamp_naive)
timestamp_presented = timestamp_utc.astimezone(user_tz)
This is the most robust approach (likely refactored into a function). If it is deemed too cumbersome to apply for all call sites in the application, it is possible to patch the driver with custom deserialization for this type. However, doing this depends depends some on internal APIs and what extensions are present, so we will only mention the possibility, and not spell it out here.
Date and time in Cassandra are idealized markers, much like datetime.date
and datetime.time
in the Python standard
library. Unlike these Python implementations, the Cassandra encoding supports much wider ranges. To accommodate these
ranges without overflow, this driver returns these data in custom types: util.Date
and util.Time
.
For simple (not prepared) statements, the input values for each of these can be either a string literal or an encoded integer. See Working with dates or Working with time for details on the encoding or string formats.
For prepared statements, the driver accepts anything that can be used to construct the util.Date
or
util.Time
classes. See the linked API docs for details.
The driver always returns custom types for date
and time
.
The driver returns util.Date
for date
in order to accommodate the wider range of values without overflow.
For applications working within the supported range of [datetime.MINYEAR
, datetime.MAXYEAR
], these are easily
converted to standard datetime.date
insances using Date.date()
.
The driver returns util.Time
for time
in order to retain nanosecond precision stored in the database.
For applications not concerned with this level of precision, these are easily converted to standard datetime.time
insances using Time.time()
.
Was this page helpful?
ScyllaDB Python Driver is available under the Apache v2 License. ScyllaDB Python Driver is a fork of DataStax Python Driver. See Copyright here.
cassandra
- Exceptions and Enumscassandra.cluster
- Clusters and Sessionscassandra.policies
- Load balancing and Failure Handling Policiescassandra.auth
- Authenticationcassandra.graph
- Graph Statements, Options, and Row Factoriescassandra.metadata
- Schema and Ring Topologycassandra.metrics
- Performance Metricscassandra.query
- Prepared Statements, Batch Statements, Tracing, and Row Factoriescassandra.pool
- Hosts and Connection Poolscassandra.protocol
- Protocol Featurescassandra.encoder
- Encoders for non-prepared Statementscassandra.decoder
- Data Return Formatscassandra.concurrent
- Utilities for Concurrent Statement Executioncassandra.connection
- Low Level Connection Infocassandra.util
- Utilitiescassandra.timestamps
- Timestamp Generationcassandra.io.asyncioreactor
- asyncio
Event Loopcassandra.io.asyncorereactor
- asyncore
Event Loopcassandra.io.eventletreactor
- eventlet
-compatible Connectioncassandra.io.libevreactor
- libev
Event Loopcassandra.io.geventreactor
- gevent
-compatible Event Loopcassandra.io.twistedreactor
- Twisted Event Loopcassandra.cqlengine.models
- Table models for object mappingcassandra.cqlengine.columns
- Column types for object mapping modelscassandra.cqlengine.query
- Query and filter model objectscassandra.cqlengine.connection
- Connection management for cqlenginecassandra.cqlengine.management
- Schema management for cqlenginecassandra.cqlengine.usertype
- Model classes for User Defined Typescassandra.datastax.graph
- Graph Statements, Options, and Row Factoriescassandra.datastax.graph.fluent
cassandra.datastax.graph.fluent.query
cassandra.datastax.graph.fluent.predicates