Was this page helpful?
ScyllaDB Python Driver is available under the Apache v2 License. ScyllaDB Python Driver is a fork of DataStax Python Driver. See Copyright here.
Caution
You're viewing documentation for a deprecated version of Scylla Python Driver. Switch to the latest stable version.
The fluent API adds graph features to the core driver:
A TinkerPop GraphTraversalSource builder to execute traversals on a DSE cluster
The ability to execution traversal queries explicitly using execute_graph
GraphSON serializers for all DSE Graph types.
DSE Search predicates
The Graph fluent API depends on Apache TinkerPop and is not installed by default. Make sure you have the Graph requirements are properly installed.
You might be interested in reading the DSE Graph Getting Started documentation to understand the basics of creating a graph and its schema.
The driver provides Session.execute_graph()
, which allows users to execute traversal
query strings. Here is a simple example:
session.execute_graph("g.addV('genre').property('genreId', 1).property('name', 'Action').next();")
Since graph queries can be very complex, working with strings is not very convenient and is hard to maintain. This fluent API allows you to build Gremlin traversals and write your graph queries directly in Python. These native traversal queries can be executed explicitly, with a Session object, or implicitly:
g = DseGraph.traversal_source(session=dse_session)
g.addV('genre').property('genreId', 1).property('name', 'Action').next()
# implicit execution caused by iterating over results
for v in g.V().has('genre', 'name', 'Drama').in('belongsTo').valueMap():
print(v)
These Python types are also supported transparently:
g.addV('person').property('name', 'Mike').property('birthday', datetime(1984, 3, 11)). \
property('house_yard', Polygon(((30, 10), (40, 40), (20, 40), (10, 20), (30, 10)))
More readings about Gremlin:
The fluent api takes advantage of configuration profiles to allow different execution configurations for the various query handlers. Graph traversal execution requires a custom execution profile to enable Gremlin-bytecode as query language. Here is how to accomplish this configuration:
from cassandra.cluster import Cluster, EXEC_PROFILE_GRAPH_DEFAULT
from cassandra.datastax.graph.fluent import DseGraph
ep = DseGraph.create_execution_profile('graph_name')
cluster = Cluster(execution_profiles={EXEC_PROFILE_GRAPH_DEFAULT: ep})
session = cluster.connect()
g = DseGraph.traversal_source(session) # Build the GraphTraversalSource
print g.V().toList() # Traverse the Graph
Note that the execution profile created with DseGraph.create_execution_profile
cannot
be used for any groovy string queries.
If you want to change execution property defaults, please see the Execution Profile documentation for a more generalized discussion of the API. Graph traversal queries use the same execution profile defined for DSE graph. If you need to change the default properties, please refer to the DSE Graph query documentation page
Traversal queries can be executed explicitly using session.execute_graph or session.execute_graph_async. These functions return results as DSE graph types. If you are familiar with DSE queries or need async execution, you might prefer that way. Below is an example of explicit execution. For this example, assume the schema has been generated as above:
from cassandra.datastax.graph.fluent import DseGraph
from pprint import pprint
# create a tinkerpop graphson2 ExecutionProfile
ep = DseGraph.create_execution_profile('graph_name')
cluster = Cluster(execution_profiles={EXEC_PROFILE_GRAPH_DEFAULT: ep})
session = cluster.connect()
g = DseGraph.traversal_source(session=session)
addV_query = DseGraph.query_from_traversal(
g.addV('genre').property('genreId', 1).property('name', 'Action')
)
v_query = DseGraph.query_from_traversal(g.V())
for result in session.execute_graph(addV_query):
pprint(result.value)
for result in session.execute_graph(v_query):
pprint(result.value)
Using the DseGraph
class, you can build a GraphTraversalSource
that will execute queries on a DSE session without explicitly passing anything to
that session. We call this implicit execution because the Session is not
explicitly involved. Everything is managed internally by TinkerPop while
traversing the graph and the results are TinkerPop types as well.
# Build the GraphTraversalSource
g = DseGraph.traversal_source(session)
# implicitly execute the query by traversing the TraversalSource
g.addV('genre').property('genreId', 1).property('name', 'Action').next()
# blocks until the query is completed and return the results
results = g.V().toList()
pprint(results)
You can execute a graph traversal query asynchronously by using .promise(). It returns a python Future.
# Build the GraphTraversalSource
g = DseGraph.traversal_source(session)
# implicitly execute the query by traversing the TraversalSource
g.addV('genre').property('genreId', 1).property('name', 'Action').next() # not async
# get a future and wait
future = g.V().promise()
results = list(future.result())
pprint(results)
# or set a callback
def cb(f):
results = list(f.result())
pprint(results)
future = g.V().promise()
future.add_done_callback(cb)
# do other stuff...
If you don’t want to change the default graph execution profile (EXEC_PROFILE_GRAPH_DEFAULT), you can register a new one as usual and use it explicitly. Here is an example:
from cassandra.cluster import Cluster
from cassandra.datastax.graph.fluent import DseGraph
cluster = Cluster()
ep = DseGraph.create_execution_profile('graph_name')
cluster.add_execution_profile('graph_traversal', ep)
session = cluster.connect()
g = DseGraph.traversal_source()
query = DseGraph.query_from_traversal(g.V())
session.execute_graph(query, execution_profile='graph_traversal')
You can also create multiple GraphTraversalSources and use them with the same execution profile (for different graphs):
g_movies = DseGraph.traversal_source(session, graph_name='movies', ep)
g_series = DseGraph.traversal_source(session, graph_name='series', ep)
print g_movies.V().toList() # Traverse the movies Graph
print g_series.V().toList() # Traverse the series Graph
DSE Graph supports batch queries using a TraversalBatch
object
instantiated with DseGraph.batch
. A TraversalBatch
allows
you to execute multiple graph traversals in a single atomic transaction. A
traversal batch is executed with Session.execute_graph()
or using
TraversalBatch.execute
if bounded to a DSE session.
Either way you choose to execute the traversal batch, you need to configure the execution profile accordingly. Here is a example:
from cassandra.cluster import Cluster
from cassandra.datastax.graph.fluent import DseGraph
ep = DseGraph.create_execution_profile('graph_name')
cluster = Cluster(execution_profiles={'graphson2': ep})
session = cluster.connect()
g = DseGraph.traversal_source()
To execute the batch using Session.execute_graph()
, you need to convert
the batch to a GraphStatement:
batch = DseGraph.batch()
batch.add(
g.addV('genre').property('genreId', 1).property('name', 'Action'))
batch.add(
g.addV('genre').property('genreId', 2).property('name', 'Drama')) # Don't use `.next()` with a batch
graph_statement = batch.as_graph_statement()
graph_statement.is_idempotent = True # configure any Statement parameters if needed...
session.execute_graph(graph_statement, execution_profile='graphson2')
To execute the batch using TraversalBatch.execute
, you need to bound the batch to a DSE session:
batch = DseGraph.batch(session, 'graphson2') # bound the session and execution profile
batch.add(
g.addV('genre').property('genreId', 1).property('name', 'Action'))
batch.add(
g.addV('genre').property('genreId', 2).property('name', 'Drama')) # Don't use `.next()` with a batch
batch.execute()
DSL are very useful to write better domain-specific APIs and avoiding code duplication. Let’s say we have a graph of People and we produce a lot of statistics based on age. All graph traversal queries of our application would look like:
g.V().hasLabel("people").has("age", P.gt(21))...
which is not really verbose and quite annoying to repeat in a code base. Let’s create a DSL:
from gremlin_python.process.graph_traversal import GraphTraversal, GraphTraversalSource
class MyAppTraversal(GraphTraversal):
def younger_than(self, age):
return self.has("age", P.lt(age))
def older_than(self, age):
return self.has("age", P.gt(age))
class MyAppTraversalSource(GraphTraversalSource):
def __init__(self, *args, **kwargs):
super(MyAppTraversalSource, self).__init__(*args, **kwargs)
self.graph_traversal = MyAppTraversal
def people(self):
return self.get_graph_traversal().V().hasLabel("people")
Now, we can use our DSL that is a lot cleaner:
from cassandra.datastax.graph.fluent import DseGraph
# ...
g = DseGraph.traversal_source(session=session, traversal_class=MyAppTraversalsource)
g.people().younger_than(21)...
g.people().older_than(30)...
To see a more complete example of DSL, see the Python killrvideo DSL app
DSE Graph can use search indexes that take advantage of DSE Search functionality for efficient traversal queries. Here are the list of additional search predicates:
Text tokenization:
Text match:
Geo:
For text tokenization:
s.execute_graph("schema.vertexLabel('my_vertex_label').index('search').search().by('text_field').asText().add()")
For text match:
s.execute_graph("schema.vertexLabel('my_vertex_label').index('search').search().by('text_field').asString().add()")
For geospatial:
You can create a geospatial index on Point and LineString fields.
s.execute_graph("schema.vertexLabel('my_vertex_label').index('search').search().by('point_field').add()")
Token:
from cassandra.datastax.graph.fluent.predicates import Search
# ...
g = DseGraph.traversal_source()
query = DseGraph.query_from_traversal(
g.V().has('my_vertex_label','text_field', Search.token_regex('Hello.+World')).values('text_field'))
session.execute_graph(query)
Text:
from cassandra.datastax.graph.fluent.predicates import Search
# ...
g = DseGraph.traversal_source()
query = DseGraph.query_from_traversal(
g.V().has('my_vertex_label','text_field', Search.prefix('Hello')).values('text_field'))
session.execute_graph(query)
Geospatial:
from cassandra.datastax.graph.fluent.predicates import Geo
from cassandra.util import Distance
# ...
g = DseGraph.traversal_source()
query = DseGraph.query_from_traversal(
g.V().has('my_vertex_label','point_field', Geo.inside(Distance(46, 71, 100)).values('point_field'))
session.execute_graph(query)
For more details, please refer to the official DSE Search Indexes Documentation
Was this page helpful?
ScyllaDB Python Driver is available under the Apache v2 License. ScyllaDB Python Driver is a fork of DataStax Python Driver. See Copyright here.
cassandra
- Exceptions and Enumscassandra.cluster
- Clusters and Sessionscassandra.policies
- Load balancing and Failure Handling Policiescassandra.auth
- Authenticationcassandra.graph
- Graph Statements, Options, and Row Factoriescassandra.metadata
- Schema and Ring Topologycassandra.metrics
- Performance Metricscassandra.query
- Prepared Statements, Batch Statements, Tracing, and Row Factoriescassandra.pool
- Hosts and Connection Poolscassandra.protocol
- Protocol Featurescassandra.encoder
- Encoders for non-prepared Statementscassandra.decoder
- Data Return Formatscassandra.concurrent
- Utilities for Concurrent Statement Executioncassandra.connection
- Low Level Connection Infocassandra.util
- Utilitiescassandra.timestamps
- Timestamp Generationcassandra.io.asyncioreactor
- asyncio
Event Loopcassandra.io.asyncorereactor
- asyncore
Event Loopcassandra.io.eventletreactor
- eventlet
-compatible Connectioncassandra.io.libevreactor
- libev
Event Loopcassandra.io.geventreactor
- gevent
-compatible Event Loopcassandra.io.twistedreactor
- Twisted Event Loopcassandra.cqlengine.models
- Table models for object mappingcassandra.cqlengine.columns
- Column types for object mapping modelscassandra.cqlengine.query
- Query and filter model objectscassandra.cqlengine.connection
- Connection management for cqlenginecassandra.cqlengine.management
- Schema management for cqlenginecassandra.cqlengine.usertype
- Model classes for User Defined Typescassandra.datastax.graph
- Graph Statements, Options, and Row Factoriescassandra.datastax.graph.fluent
cassandra.datastax.graph.fluent.query
cassandra.datastax.graph.fluent.predicates
On this page